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MoSys FPGA RTL Memory Controller Selector 
 
___________________________________________________________________________________ 

Overview 
 
The MoSys memory controllers are designed to simplify the integration of the accelerator 
engines into a design. The controllers are built with all the high-speed SerDes control 
and implementation of the GCI protocol essentially “hidden away” from your design 
effort. MoSys controllers which have been deployed in the field since 2004 have been 
proven to be robust and reliable.  
The interface which is presented to the user application interface is a straightforward 
Address, Data, Command bus structure, that is compatible with and easily adapted to an 
AXI interface. Multiple versions are available to support different access patterns and for 
different hosts (Xilinx, Intel, ASIC etc.)  
This write-up has been presented to allow a user to realize that integration and 
implementation of the MoSys family of accelerator engines is not a long process and can 
be accelerated by utilization of the readily available MoSys IP. 
______________________________________________________________________ 
 

Introduction 
The MoSys memory controllers are designed and offered with a few variations of 
memory access patterns. The most common access patterns are: 

• Balanced Read/Write (similar to QDR SRAM) 

•    Native (higher read access than write – for table access applications) 

•    Burst (Allows one command to access 2, 4 or 8 locations) 

• Statistics (Takes advantage of the Accelerator Engines on board ALU to keep data   
statistics) 

 

The RTL that is supplied by MoSys provides an interface between the User Application 
Logic and the MoSys Accelerator Engine device (could be BE-2 or BE-3 families). The 
Memory Controller also implements all the required signaling and handshaking defined in 
the GCI Interface protocol, Framer logic. 

 

The signals interface at the User Application provides Bandwidth Engine User a simple 
SRAM memory read/write operation with burst capability. This simple interface shields 
the users from the BE-X commands and the scheduling logic for Bandwidth Engine 
memory partitions wheel. 
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Figure 1: Memory Controller Interface 



The goal of each of the Memory Controller designs is to balance the bandwidth between 
the User Application Interface and the Bandwidth Engine Interface. For many 
applications there will be four read/write interfaces from the User Application running at 
the host core clock frequency. This is to balance the bandwidth of the application logic 
(assumed to be running at FPGA speeds vs. the GCI I/O and core frequency of the 
MoSys accelerator engines)        

 

In many of the FPGA applications that has been between 250MHz and 390MHz clock 
rate. Each interface can accommodate one memory read and one memory write on each 
clock cycle. These result in memory accesses per interface that can saturate the access 
bus to the memory. 

 

This allows the total bandwidth at the User Application interfaces to be up to 2 billion 
memory accesses per second when using a BE-2 device and 6 billion memory 
operations when using a BE-3 device. (This bandwidth matches the total I/O bandwidth 
on Bandwidth Engine when using all 16 lanes at maximum allowable SerDes rate of the 
Accelerator engine device) per lane. The following picture illustrates the above memory 
bandwidth discussion. 

 

 
2 Billion Accesses for 4 interfaces 
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Figure 2: Memory Bandwidth between Memory Controller and Bandwidth Engine. 



 
Balanced Read/Write, Native and BURST 

 

Interfaces between Memory Controller and User Application 

This section describes the interface signals and the interface protocols between the 
Memory Controller and the User Application. 

Interface Signals 

The interface between Memory Controller and User Application consists of four sets of 
similar interface signals. However, just one of the interfaces will be described to avoid 
redundancy. All signals will be appended by the string “_pi” at the end of their names 
where i can be 0, 1, 2, or 3 depending on the interface set. 

 

The following table describes all the signals in one of the interface signals set between 
the User Application and the Memory Controller. There are four of these interface signals 
sets in the current implementation. 

 

Signal Name Width Dir Description 

Read Interface 

rd_pi 1 In Assertion of this signal to indicate that this is a read transaction. 

rd_addr_pi 32 In Read address of the memory for this transaction. For burst transaction, this 

is the first address of the burst memory block. Please refer to the Address 

section of this specification to see the detail of this address field. 

rd_data_pi 72 Out Returned data from BE1 memory. This data is qualified by the “rd_datav_pi” 

signal. 

rd_wait_rq_pi 1 Out The Memory controller asserts “rd_wait_rq_pi” to indicate that it cannot 

accept the current read request. The User Application should hold all the 

request signals (rd_pi, rd_addr_pi …) until the de-assertion of this signal. 

rd_datav_pi 1 Out The Memory Controller asserts this signal to indicate the current data in the 

“rd_data_pi” bus is valid. 

rd_burstcount_pi 5 In These signals show the number of 72-bits words in this read burst 

transaction. 

rd_burst_pi 1 In Assertion of this signal to indicate this transaction is the read burst 

transaction. 

rd_flush_pi 1 In Assertion of this signal will flush all the pending read transactions and their 

associated read data. The flush action is effective for the next cycle after the 

assertion of “flush” signal. It is the responsibility of the User Application to 

ignore or to accept the valid “rd_data_pi” in the current cycle. 



Signal Name Width Dir Description 

Write Interface    

wr_pi 1 

wr_addr_pi 32 In Write address of the memory for this transaction. For burst transaction, this 

is the first address of the burst memory block. Please refer to the Address 

section of this specification to see the detail of this address field. 

wr_data_pi 72 In Write data from the User Application logic. 

wr_wait_rq_pi 1 Out The Memory controller asserts “wr_wait_rq_pi” to indicate that it cannot 

accept the current write request. The User Application should hold all the 

request signals (wr_pi, wr_addr_pi …) until the de-assertion of this signal. 

wr_burstcount_pi 5 In These signals show the number of 72-bits words in this write burst 

transaction. 

wr_burst_pi 1 In Assertion of this signal to indicate this transaction is the write burst 

transaction 

    

    

Table 1: Interface Signals Set between Memory Controller and User Application logic 

 

 

Interface Protocol 

This section illustrates the interface protocols between the User Application and the 
Memory Controller. 

 

Single Read/Write transactions 
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Figure 3: Single Read/Write Transaction 



The above picture illustrates the read transaction followed by a write transaction. A read 
transaction is initiated by the user application on the assertion of the “rd_pi” signal, and 
the read address “rd_addr_pi”. The Memory Controller returns the “rd_data_pi” along 
with the “rd_datav_pi” signal to indicate the read data is valid in that cycle. 

The write cycle is initiated by the user application on the assertion of the “wr_pi” signal, 
the write address “wr_addr_pi”, and the “wr_data_pi”. 

 

Single Read/Write Transaction with Wait cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above picture illustrates the read transaction followed by the write transaction with 
wait request from the Memory Controller to stall the User Application. 

 

The read transaction is initiated by the assertion of signal “rd_pi” along with the read 
address “rd_addr_pi”. The Memory Controller asserts the “rd_wait_rq_pi” signal in the 
same cycle to request the User Application to hold the “rd_addr_pi” bus and the “rd_pi” 
signal until the de-assertion of “rd_wait_rq_pi”. This is the mechanism for the Memory 
Controller to asserts back-pressure the User Application logic in the case its FIFOs are 
full. As in the non-stalled case, the Memory Controller returns the “rd_data_pi” along with 
the “rd_datav_pi” signal to indicate the validity of the data in that cycle. 
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Figure 4: Single Read/Write Transaction with Wait cycles 



The write transaction is initiated by the assertion of signal “wr_pi” along with the write 
address “wr_addr_pi”, and the “wr_data_pi”. The Memory Controller asserts the 
“wr_wait_rq_pi” signal in the same cycle to request the User Application to hold the 
“wr_addr_pi” bus, the “wr_pi” signal, and the “wr_data_pi” bus until the de-assertion of 
“wait_rq_pi” signal. 
 

Pipelined Read Transactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Memory Controller supports pipelined read transactions. The User Application can 
issue back to back read requests until the Memory Controller issues the back-pressure 
signal “rd_wait_rq_pi”. All the return “rd_data_pi” are delivered along with the associated 
“rd_datav_pi” in the order of the read requests. 

 

The above picture illustrates the pipelined read transactions. The User Application issues 
five back to back read requests with the stall happen on the third request. The Memory 
Controller returns the five “rd_data_pi” in the order of the requests. 
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Burst Read Transaction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Memory Controller supports burst read transactions. The User Application initiates 
the burst read transaction by asserting signal “rd_burst_pi” along with the “rd_pi” signal, 
the start address of the burst block (“rd_addr_pi” bus), and the burst count 
(“rd_burstcount_pi” bus). Similar to the single read request, the Memory Controller stalls 
the User Application by asserting the “rd_wait_rq_pi” signal. The User Application needs 
to hold the read signal, the burst indicator signal, the burst count, and the start address 
in this case. The Memory Controller returns the burst data (“rd_data_pi” bus) along with 
the “rd_datav_pi” signal to indicate the validity of the data. The Memory Controller uses 
the start address and increment this address for subsequent words in the burst block. If 
the address crosses the memory partition address, it will be wrapped around in the 
current implementation. 

 

The above picture illustrates the burst transactions with 2 words and 4 words burst sizes. 
The second transaction is stalled by the Memory Controller with the assertion of 
“rd_wait_rq_pi” signal. 
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           Figure 6: Burst Read Transaction 



Burst Write Transaction 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Memory Controller supports burst write transactions. The User Application initiates 
the burst write transaction by asserting the “wr_burst_pi” signal, the “wr_pi” signal, the 
start address of the burst block (“wr_addr_pi” bus), the burst count (“wr_burstcount_pi” 
bus), and the write data (“wr_data_pi” bus). Similar to the single write request, the 
Memory Controller can stall the User Application by asserting the “wr_wait_rq_pi” signal. 
The User Application needs to hold the write signal, the burst indicator, the burst count, 
the start address, and the write data in this case. The User Application can throttle the 
write data within the burst block by using the “wr_pi” signal. The Memory Controller uses 
the start address and increment this address for subsequent words in the burst block. If 
the address crosses the memory partition address, it will be wrapped around in the 
current implementation. 

 

The above picture illustrates the burst write transaction with the burst count of 4. The 
Memory Controller stalls the request by asserting the “wr_wait_rq_pi”. The User 
Application throttles the “wr_data_pi” by using the “wr_pi” signal. 
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Figure 7: Burst Write Transaction 



 
 

Statistics (R-M-W) 

1 Introduction 
This is the specification for the BE Statistic Controller. This interface performs the same 
bridge function between the application logic and the bandwidth engine device however 
it is designed to support R-M-W  or read-modify-write operations in order to allow the 
application to issue ALU operations to perform functions such as maintaining statistics or 
metering. This design utilizes the large memories found in the BE2 or BE3 devices along 
with its embedded ALU and its RMW instructions in order to implement the counter or 
metering.  

 

As an example, with the current BE2 memory size and 8 serial lanes running at 12.8 
Gbps, this Statistic Controller has the following capabilities: 

 

•  Incrementing up to eight concurrent counters at the rate up to 160 Million counts per 
second which is higher than typical 100GE at 148.8 Mpps. 

•  The 576 Mb memory capacity on BE2 can support up to 8 x 256K counters. 

•  Interface to read the counters. This operation returns the counter content. 

•  These counters are lifetime counters (which means they are a full 64 bits wide). 

•  Counters are initialized by the controller after de-assertion of reset. 

•  Diagnostic interface to read and write BE2 memory for initial memory testing. 

•  Optional ECC Correction circuitry to correct one-bit error and detect two bits or more 
error on the counter read data. 

 

2  Micro Architecture 

For a statistics and R-M-W operations there are 8 counter interfaces in which four 
counters are mapped to lower part of the four partitions in BE memory and other four 
counters are mapped to upper part of the four partitions. The user specifies 18-bit 
counter index that is mapped to a location in partition. The figure 8 below illustrates the 
statistic controller interfaced with user at one end and GCI PCS/Framer at the other end.  

 

The user requests are captured at the input of an Asynchronous FIFO at a clock 
frequency of the application logic. The R-M-W (or statistics) controller then pulls user 
requests out of this Asynchronous FIFO at its internal clock derived from SerDes clock. 
The statistic controller operates at this frequency to optimize the interface with GCI 
running at SerDes speed. The statistic controller creates RMW (Read-Modify-Write) 
commands from the user requests to implement counter operation using BE memory. 



The statistic controller has following major blocks: 

 

1. Eight asynchronous FIFOs corresponding to 8 user increment requests.  

2. Eight asynchronous FIFOs corresponding to 8 users read count requests. 

3. One Asynchronous FIFO for memory Diagnostic interface user request. 

4. A scheduler block which performs RMW command formation and scheduling based on 
user request. 

5. A receive data block that receives the read data from the PCS/Framer block and send it 
to the user on its respective interface, this being the same interface that requested the 
action. 

6. A debug interface block that tests the BE memory. 

On each wheel (or FPGA Cycle time), four counter operations are performed that is four 
R-M-W commands corresponding to counter increments, are scheduled. On one-wheel 
cycle, four counters located at lower part of four partitions in BE memory, are 
incremented. In next wheel cycle, another four counters located at upper part of four 
partitions, are incremented. Out of every 15 accesses of the BE memory, first 14 
accesses are RMW commands corresponding to counter increments and 15th access is 
the memory read operation. The RMW and read command scheduling is shown in Figure 
9 below. 

 

 

The following pictures illustrate a BE Statistic Application. 

Figure 8: BE Statistic Controller 



 

 

 

 Figure 9: BE Statistic Controller issuance scheduling 
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3.1 Interface Signals 

The following table(s) describes all the interface signals between the Statistic Controller 
and the User Application. 

 

 

 

 

 

Clock 

Cycle

CMD_SCH

_WHEEL

MC_CMD0_

SCH_0

MC_CMD0_

SCH_1

MC_CMD1_

SCH_0

MC_CMD1_

SCH_1

MC_CMD2_

SCH_0

MC_CMD2

_SCH_1

MC_CMD3_

SCH_0

MC_CMD3

_SCH_1

0 LDBASE LDBASE LDBASE LDBASE

1 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

2 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

3 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

4 3 CNT_4 LDBASE CNT_5 LDBASE RD_6 LDBASE CNT_7 LDBASE

5 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

6 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

7 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

8 3 CNT_4 LDBASE RD_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

9 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

10 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

11 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

12 3 RD_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

13 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

14 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

15 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE RD_3 LDBASE

16 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

17 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

18 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

19 2 CNT_0 LDBASE CNT_1 LDBASE RD_2 LDBASE CNT_3 LDBASE

20 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

21 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

22 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

23 2 CNT_0 LDBASE RD_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

24 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

25 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

26 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

27 2 RD_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

28 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

29 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

30 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE RD_7 LDBASE

PW-0 PW-1 PW-2 PW-3



                   Table 2 Interface Signals between Statistic Controller and User Application 

 

Signal Name Width Dir Description 

Counters Increment Interface. 

inc_cntr_# 1 IN Enable incrementing counter_# (Here, # refers to counters 0 to 7). 

inc_index_#[17:0] 18 IN The index (out of 256K) for counter #. 

inc_value_#[15:0] 16 IN The increment value for counter #. 

inc_ready_# 1 OUT Back pressure signal to counter #. The Statistic Controller only 

accepts the counter increment input from the user application when 

this signal is asserted. 

Counters Read Interface. 

rd_cntr_# 1 IN This signal indicates the read counter # request. 

rd_cntr_index_#[17:0] 18 IN The index for read/clear counter #. 

rd_cntr_ready_# 1 OUT Back pressure signal to the user application. The Statistic Controller 

only accepts the counter # read/clear request from the user 

application when this signal is asserted. 

rd_cntr_#_data[63:0] 64 OUT The value of counter #. 

rd_cntr_#_valid 1 OUT This signal indicates that the rd_cntr_#_data bus is valid. If the 

optional ECC correction circuitry is implemented, this signal also 

indicates the validity of the two signals rd_cntr_0_corr_err and 

rd_cntr_0_uncorr_err. 

Diagnostic Memory Write Read Interface. 

debug_rd_mem 1 IN Debug Read memory request 

debug_rd_mem_data_valid 1 OUT This signal indicates that the rd_mem_data bus is valid. 

debug_wr_mem 1 IN Debug memory request 

debug_mem_addr[20:0] 21 IN Debug memory address 

debug_mem_partition[1:0] 2 IN Partition number for the memory debug command 

debug_wr_mem_data[71:0] 72 IN Debug memory write data. 

debug_mem_ready 1 OUT Back pressure signal to the user application. The Statistic Controller 

only accept memory write request from the user application when this 

signal is asserted. 

    

 

 

 
 
 



Summary 
 
In each of the above cases MoSys memory controllers are designed to simplify the 
integration of the accelerator engines into a design. The controllers are built with all the 
high-speed SerDes control and implementation of the GCI protocol essentially “hidden 
away” from your design effort. MoSys controllers which have been deployed in the field 
since 2004 have been proven to be robust and reliable.  
 
The interface which is presented to the user application interface is a straightforward 
Address, Data, Command bus structure, that is compatible with and easily adapted to an 
AXI interface. Multiple versions are available to support different access patterns and for 
different hosts (Xilinx, Intel, ASIC etc.)  
 
This write-up has been presented to allow a user to realize that integration and 
implementation of the MoSys family of accelerator engines is not a long process and can 
be accelerated by utilization of the readily available MoSys IP. 
If, however your desire is to develop your own interface to the Accelerator Engine 
Family, the GCI specification is readily available and free to implement and use. For 
additional information on any of the controllers that mentioned bove or just to speak with 
MoSys on the use of their Accelerator Engine Family of devices please contact MoSys 
at: www.MoSys.com. 
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