

Title: MoSys FPGA RTL Memory Controller
Selector
Author: M. Baumann
Date: 2020, 04, 14

Document Number:
TB_AD_FPGA RTL MEM CONTROLER
SELECTOR_200413

MoSys Technical Brief

SUMMARY

This technical brief presents a
comprehensive overview of the integration
and implementation of the MoSys family of
accelerator engines and shows how
applications can be accelerated by
utilization of the readily available MoSys
IP.

Key Points

• Interfaces between Memory
Controller and User Application

• RMW Statistics

• Interface Signals

MoSys FPGA RTL Memory Controller Selector

Overview

The MoSys memory controllers are designed to simplify the integration of the accelerator
engines into a design. The controllers are built with all the high-speed SerDes control
and implementation of the GCI protocol essentially “hidden away” from your design
effort. MoSys controllers which have been deployed in the field since 2004 have been
proven to be robust and reliable.
The interface which is presented to the user application interface is a straightforward
Address, Data, Command bus structure, that is compatible with and easily adapted to an
AXI interface. Multiple versions are available to support different access patterns and for
different hosts (Xilinx, Intel, ASIC etc.)
This write-up has been presented to allow a user to realize that integration and
implementation of the MoSys family of accelerator engines is not a long process and can
be accelerated by utilization of the readily available MoSys IP.
__

Introduction
The MoSys memory controllers are designed and offered with a few variations of
memory access patterns. The most common access patterns are:

• Balanced Read/Write (similar to QDR SRAM)

• Native (higher read access than write – for table access applications)

• Burst (Allows one command to access 2, 4 or 8 locations)

• Statistics (Takes advantage of the Accelerator Engines on board ALU to keep data
statistics)

The RTL that is supplied by MoSys provides an interface between the User Application
Logic and the MoSys Accelerator Engine device (could be BE-2 or BE-3 families). The
Memory Controller also implements all the required signaling and handshaking defined in
the GCI Interface protocol, Framer logic.

The signals interface at the User Application provides Bandwidth Engine User a simple
SRAM memory read/write operation with burst capability. This simple interface shields
the users from the BE-X commands and the scheduling logic for Bandwidth Engine
memory partitions wheel.

Memory
Controller

User
Application
Logic

GCI
Framer

Figure 1: Memory Controller Interface

The goal of each of the Memory Controller designs is to balance the bandwidth between
the User Application Interface and the Bandwidth Engine Interface. For many
applications there will be four read/write interfaces from the User Application running at
the host core clock frequency. This is to balance the bandwidth of the application logic
(assumed to be running at FPGA speeds vs. the GCI I/O and core frequency of the
MoSys accelerator engines)

In many of the FPGA applications that has been between 250MHz and 390MHz clock
rate. Each interface can accommodate one memory read and one memory write on each
clock cycle. These result in memory accesses per interface that can saturate the access
bus to the memory.

This allows the total bandwidth at the User Application interfaces to be up to 2 billion
memory accesses per second when using a BE-2 device and 6 billion memory
operations when using a BE-3 device. (This bandwidth matches the total I/O bandwidth
on Bandwidth Engine when using all 16 lanes at maximum allowable SerDes rate of the
Accelerator engine device) per lane. The following picture illustrates the above memory
bandwidth discussion.

2 Billion Accesses for 4 interfaces

Memory
Controller

User
Application
Logic

144 Mb Memory

144 Mb Memory

144 Mb Memory

144 Mb Memory

FRAMER PCS SERDES

FRAMER PCS SERDES

BE-2

Eight SerDes Lanes

Eight SerDes Lanes

250MHz – 390Mhz interface

Four to eight 72-bit frames per interface

Figure 2: Memory Bandwidth between Memory Controller and Bandwidth Engine.

Balanced Read/Write, Native and BURST

Interfaces between Memory Controller and User Application

This section describes the interface signals and the interface protocols between the
Memory Controller and the User Application.

Interface Signals

The interface between Memory Controller and User Application consists of four sets of
similar interface signals. However, just one of the interfaces will be described to avoid
redundancy. All signals will be appended by the string “_pi” at the end of their names
where i can be 0, 1, 2, or 3 depending on the interface set.

The following table describes all the signals in one of the interface signals set between
the User Application and the Memory Controller. There are four of these interface signals
sets in the current implementation.

Signal Name Width Dir Description

Read Interface

rd_pi 1 In Assertion of this signal to indicate that this is a read transaction.

rd_addr_pi 32 In Read address of the memory for this transaction. For burst transaction, this

is the first address of the burst memory block. Please refer to the Address

section of this specification to see the detail of this address field.

rd_data_pi 72 Out Returned data from BE1 memory. This data is qualified by the “rd_datav_pi”

signal.

rd_wait_rq_pi 1 Out The Memory controller asserts “rd_wait_rq_pi” to indicate that it cannot

accept the current read request. The User Application should hold all the

request signals (rd_pi, rd_addr_pi …) until the de-assertion of this signal.

rd_datav_pi 1 Out The Memory Controller asserts this signal to indicate the current data in the

“rd_data_pi” bus is valid.

rd_burstcount_pi 5 In These signals show the number of 72-bits words in this read burst

transaction.

rd_burst_pi 1 In Assertion of this signal to indicate this transaction is the read burst

transaction.

rd_flush_pi 1 In Assertion of this signal will flush all the pending read transactions and their

associated read data. The flush action is effective for the next cycle after the

assertion of “flush” signal. It is the responsibility of the User Application to

ignore or to accept the valid “rd_data_pi” in the current cycle.

Signal Name Width Dir Description

Write Interface

wr_pi 1

wr_addr_pi 32 In Write address of the memory for this transaction. For burst transaction, this

is the first address of the burst memory block. Please refer to the Address

section of this specification to see the detail of this address field.

wr_data_pi 72 In Write data from the User Application logic.

wr_wait_rq_pi 1 Out The Memory controller asserts “wr_wait_rq_pi” to indicate that it cannot

accept the current write request. The User Application should hold all the

request signals (wr_pi, wr_addr_pi …) until the de-assertion of this signal.

wr_burstcount_pi 5 In These signals show the number of 72-bits words in this write burst

transaction.

wr_burst_pi 1 In Assertion of this signal to indicate this transaction is the write burst

transaction

Table 1: Interface Signals Set between Memory Controller and User Application logic

Interface Protocol

This section illustrates the interface protocols between the User Application and the
Memory Controller.

Single Read/Write transactions

CLK

RD rd_addr_
pi

rd_wait_rq_pi

rd_data_pi

rd_datav_pi

wr_data_p
i

wr_pi

rd_pi

WRT wr_addr_pi

rd_burst_pi

wr_burst_pi

Figure 3: Single Read/Write Transaction

The above picture illustrates the read transaction followed by a write transaction. A read
transaction is initiated by the user application on the assertion of the “rd_pi” signal, and
the read address “rd_addr_pi”. The Memory Controller returns the “rd_data_pi” along
with the “rd_datav_pi” signal to indicate the read data is valid in that cycle.

The write cycle is initiated by the user application on the assertion of the “wr_pi” signal,
the write address “wr_addr_pi”, and the “wr_data_pi”.

Single Read/Write Transaction with Wait cycles

The above picture illustrates the read transaction followed by the write transaction with
wait request from the Memory Controller to stall the User Application.

The read transaction is initiated by the assertion of signal “rd_pi” along with the read
address “rd_addr_pi”. The Memory Controller asserts the “rd_wait_rq_pi” signal in the
same cycle to request the User Application to hold the “rd_addr_pi” bus and the “rd_pi”
signal until the de-assertion of “rd_wait_rq_pi”. This is the mechanism for the Memory
Controller to asserts back-pressure the User Application logic in the case its FIFOs are
full. As in the non-stalled case, the Memory Controller returns the “rd_data_pi” along with
the “rd_datav_pi” signal to indicate the validity of the data in that cycle.

CLK

RD rd_addr_pi

rd_pi

rd_data_pi

rd_datav_pi

wait_rq_pi

wr_data_p
i

wr_p
i

wr_burst_pi

WRT wr_addr_p
i

rd_burst_pi

wr_wait_rq_p
i

Figure 4: Single Read/Write Transaction with Wait cycles

The write transaction is initiated by the assertion of signal “wr_pi” along with the write
address “wr_addr_pi”, and the “wr_data_pi”. The Memory Controller asserts the
“wr_wait_rq_pi” signal in the same cycle to request the User Application to hold the
“wr_addr_pi” bus, the “wr_pi” signal, and the “wr_data_pi” bus until the de-assertion of
“wait_rq_pi” signal.

Pipelined Read Transactions

The Memory Controller supports pipelined read transactions. The User Application can
issue back to back read requests until the Memory Controller issues the back-pressure
signal “rd_wait_rq_pi”. All the return “rd_data_pi” are delivered along with the associated
“rd_datav_pi” in the order of the read requests.

The above picture illustrates the pipelined read transactions. The User Application issues
five back to back read requests with the stall happen on the third request. The Memory
Controller returns the five “rd_data_pi” in the order of the requests.

CLK

rd_pi

A1 rd_addr_p
i

A2 A3 A4 A5

rd_wait_rq_pi

rd_data_pi

rd_datav_pi

D1 D2 D3 D4 D5

rd_burst_pi

Figure 5: Pipelined Read Transactions

Burst Read Transaction

The Memory Controller supports burst read transactions. The User Application initiates
the burst read transaction by asserting signal “rd_burst_pi” along with the “rd_pi” signal,
the start address of the burst block (“rd_addr_pi” bus), and the burst count
(“rd_burstcount_pi” bus). Similar to the single read request, the Memory Controller stalls
the User Application by asserting the “rd_wait_rq_pi” signal. The User Application needs
to hold the read signal, the burst indicator signal, the burst count, and the start address
in this case. The Memory Controller returns the burst data (“rd_data_pi” bus) along with
the “rd_datav_pi” signal to indicate the validity of the data. The Memory Controller uses
the start address and increment this address for subsequent words in the burst block. If
the address crosses the memory partition address, it will be wrapped around in the
current implementation.

The above picture illustrates the burst transactions with 2 words and 4 words burst sizes.
The second transaction is stalled by the Memory Controller with the assertion of
“rd_wait_rq_pi” signal.

CLK

A1 rd_addr_pi A2

rd_burst_pi

rd_datav_pi

rd_wait_rq_pi

rd_burstcount_pi 2

DA1 DB1 DA2

4

DB2 DB3 DB4 rd_data_pi

rd_pi

 Figure 6: Burst Read Transaction

Burst Write Transaction

The Memory Controller supports burst write transactions. The User Application initiates
the burst write transaction by asserting the “wr_burst_pi” signal, the “wr_pi” signal, the
start address of the burst block (“wr_addr_pi” bus), the burst count (“wr_burstcount_pi”
bus), and the write data (“wr_data_pi” bus). Similar to the single write request, the
Memory Controller can stall the User Application by asserting the “wr_wait_rq_pi” signal.
The User Application needs to hold the write signal, the burst indicator, the burst count,
the start address, and the write data in this case. The User Application can throttle the
write data within the burst block by using the “wr_pi” signal. The Memory Controller uses
the start address and increment this address for subsequent words in the burst block. If
the address crosses the memory partition address, it will be wrapped around in the
current implementation.

The above picture illustrates the burst write transaction with the burst count of 4. The
Memory Controller stalls the request by asserting the “wr_wait_rq_pi”. The User
Application throttles the “wr_data_pi” by using the “wr_pi” signal.

CLK

A wr_addr_pi

wr_pi

wr_wait_rq_pi

wr_data_pi

wr_burstcount_pi

D1 D3 D2

4

D4

wr_burst_pi

Figure 7: Burst Write Transaction

Statistics (R-M-W)

1 Introduction
This is the specification for the BE Statistic Controller. This interface performs the same
bridge function between the application logic and the bandwidth engine device however
it is designed to support R-M-W or read-modify-write operations in order to allow the
application to issue ALU operations to perform functions such as maintaining statistics or
metering. This design utilizes the large memories found in the BE2 or BE3 devices along
with its embedded ALU and its RMW instructions in order to implement the counter or
metering.

As an example, with the current BE2 memory size and 8 serial lanes running at 12.8
Gbps, this Statistic Controller has the following capabilities:

• Incrementing up to eight concurrent counters at the rate up to 160 Million counts per
second which is higher than typical 100GE at 148.8 Mpps.

• The 576 Mb memory capacity on BE2 can support up to 8 x 256K counters.

• Interface to read the counters. This operation returns the counter content.

• These counters are lifetime counters (which means they are a full 64 bits wide).

• Counters are initialized by the controller after de-assertion of reset.

• Diagnostic interface to read and write BE2 memory for initial memory testing.

• Optional ECC Correction circuitry to correct one-bit error and detect two bits or more
error on the counter read data.

2 Micro Architecture

For a statistics and R-M-W operations there are 8 counter interfaces in which four
counters are mapped to lower part of the four partitions in BE memory and other four
counters are mapped to upper part of the four partitions. The user specifies 18-bit
counter index that is mapped to a location in partition. The figure 8 below illustrates the
statistic controller interfaced with user at one end and GCI PCS/Framer at the other end.

The user requests are captured at the input of an Asynchronous FIFO at a clock
frequency of the application logic. The R-M-W (or statistics) controller then pulls user
requests out of this Asynchronous FIFO at its internal clock derived from SerDes clock.
The statistic controller operates at this frequency to optimize the interface with GCI
running at SerDes speed. The statistic controller creates RMW (Read-Modify-Write)
commands from the user requests to implement counter operation using BE memory.

The statistic controller has following major blocks:

1. Eight asynchronous FIFOs corresponding to 8 user increment requests.

2. Eight asynchronous FIFOs corresponding to 8 users read count requests.

3. One Asynchronous FIFO for memory Diagnostic interface user request.

4. A scheduler block which performs RMW command formation and scheduling based on
user request.

5. A receive data block that receives the read data from the PCS/Framer block and send it
to the user on its respective interface, this being the same interface that requested the
action.

6. A debug interface block that tests the BE memory.

On each wheel (or FPGA Cycle time), four counter operations are performed that is four
R-M-W commands corresponding to counter increments, are scheduled. On one-wheel
cycle, four counters located at lower part of four partitions in BE memory, are
incremented. In next wheel cycle, another four counters located at upper part of four
partitions, are incremented. Out of every 15 accesses of the BE memory, first 14
accesses are RMW commands corresponding to counter increments and 15th access is
the memory read operation. The RMW and read command scheduling is shown in Figure
9 below.

The following pictures illustrate a BE Statistic Application.

Figure 8: BE Statistic Controller

 Figure 9: BE Statistic Controller issuance scheduling

Counter0
Idx n

18 16

Counter1

Idx n

18 16

Counter2

Idx n

18 16

Counter4

Idx n

18 16

Counter3

Idx n

18 16

Counter7

Idx n

18 16

Rd/Clr Index0

18

 Counter0 Value 64

Rd/Clr Index5
18

 Counter5 Value 64 Statistic Controller

GCI PCS/FRAMER

8

8

MOSYS

Bandwidth Engine

.

.

.

Wr/Init Index0

Counter0 Init

18

64

.

.

.

Wr/Init Index7

Counter7 Init

18

64

21

72

72

21

Rd_mem_addr

Rd_mem_data

Wr_mem_addr

Wr_mem_data

Value

Value

Counter6

Idx n

18 16

Counter5
Idxn

18 16

3.1 Interface Signals

The following table(s) describes all the interface signals between the Statistic Controller
and the User Application.

Clock

Cycle

CMD_SCH

_WHEEL

MC_CMD0_

SCH_0

MC_CMD0_

SCH_1

MC_CMD1_

SCH_0

MC_CMD1_

SCH_1

MC_CMD2_

SCH_0

MC_CMD2

_SCH_1

MC_CMD3_

SCH_0

MC_CMD3

_SCH_1

0 LDBASE LDBASE LDBASE LDBASE

1 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

2 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

3 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

4 3 CNT_4 LDBASE CNT_5 LDBASE RD_6 LDBASE CNT_7 LDBASE

5 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

6 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

7 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

8 3 CNT_4 LDBASE RD_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

9 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

10 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

11 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

12 3 RD_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

13 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

14 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

15 2 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE RD_3 LDBASE

16 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

17 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

18 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

19 2 CNT_0 LDBASE CNT_1 LDBASE RD_2 LDBASE CNT_3 LDBASE

20 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

21 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

22 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

23 2 CNT_0 LDBASE RD_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

24 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

25 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

26 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

27 2 RD_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

28 3 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE CNT_7 LDBASE

29 0 CNT_0 LDBASE CNT_1 LDBASE CNT_2 LDBASE CNT_3 LDBASE

30 1 CNT_4 LDBASE CNT_5 LDBASE CNT_6 LDBASE RD_7 LDBASE

PW-0 PW-1 PW-2 PW-3

 Table 2 Interface Signals between Statistic Controller and User Application

Signal Name Width Dir Description

Counters Increment Interface.

inc_cntr_# 1 IN Enable incrementing counter_# (Here, # refers to counters 0 to 7).

inc_index_#[17:0] 18 IN The index (out of 256K) for counter #.

inc_value_#[15:0] 16 IN The increment value for counter #.

inc_ready_# 1 OUT Back pressure signal to counter #. The Statistic Controller only

accepts the counter increment input from the user application when

this signal is asserted.

Counters Read Interface.

rd_cntr_# 1 IN This signal indicates the read counter # request.

rd_cntr_index_#[17:0] 18 IN The index for read/clear counter #.

rd_cntr_ready_# 1 OUT Back pressure signal to the user application. The Statistic Controller

only accepts the counter # read/clear request from the user

application when this signal is asserted.

rd_cntr_#_data[63:0] 64 OUT The value of counter #.

rd_cntr_#_valid 1 OUT This signal indicates that the rd_cntr_#_data bus is valid. If the

optional ECC correction circuitry is implemented, this signal also

indicates the validity of the two signals rd_cntr_0_corr_err and

rd_cntr_0_uncorr_err.

Diagnostic Memory Write Read Interface.

debug_rd_mem 1 IN Debug Read memory request

debug_rd_mem_data_valid 1 OUT This signal indicates that the rd_mem_data bus is valid.

debug_wr_mem 1 IN Debug memory request

debug_mem_addr[20:0] 21 IN Debug memory address

debug_mem_partition[1:0] 2 IN Partition number for the memory debug command

debug_wr_mem_data[71:0] 72 IN Debug memory write data.

debug_mem_ready 1 OUT Back pressure signal to the user application. The Statistic Controller

only accept memory write request from the user application when this

signal is asserted.

Summary

In each of the above cases MoSys memory controllers are designed to simplify the
integration of the accelerator engines into a design. The controllers are built with all the
high-speed SerDes control and implementation of the GCI protocol essentially “hidden
away” from your design effort. MoSys controllers which have been deployed in the field
since 2004 have been proven to be robust and reliable.

The interface which is presented to the user application interface is a straightforward
Address, Data, Command bus structure, that is compatible with and easily adapted to an
AXI interface. Multiple versions are available to support different access patterns and for
different hosts (Xilinx, Intel, ASIC etc.)

This write-up has been presented to allow a user to realize that integration and
implementation of the MoSys family of accelerator engines is not a long process and can
be accelerated by utilization of the readily available MoSys IP.
If, however your desire is to develop your own interface to the Accelerator Engine
Family, the GCI specification is readily available and free to implement and use. For
additional information on any of the controllers that mentioned bove or just to speak with
MoSys on the use of their Accelerator Engine Family of devices please contact MoSys
at: www.MoSys.com.

http://www.mosys.com/

